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Field Theory of the Two-Dimensional Ising Model: II. 
Nonlocal Specific Heat 
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The nonlocat specific heat is calculated for the two-dimensional Ising model and 
found to be identical to that found by Bray for the four-dimensional model. 
Furthermore, it is noted that analytic continuation in terms of a spectral 
function provides an especially simple description of the nonlocal specific heat. 
From unitarity the spectral function is the rate of pair production in the 
Minkowski metric, and is calculated to be equal to the velocity of the outgoing 
particles. 
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1. INTRODUCTION 

The logarithmic divergence of the specific heat of the two-dimensional 
Ising model has served since its discovery by Onsager (l~ as a protype for 
the study of critical phenomena. In an earlier publication we have pre- 
sented a simple derivation of this divergence using a continuum formula- 
tion. (2~ The latter was derived from the Lieb-Matt is-Schultz (3~ fermion 
version of the model. The Ising model specific heat has been very thor- 
oughly studied during the last few decades. Nevertheless, we wish to 
present in this short note a new derivation of a further aspect of the critical 
specific heat. This is its nonlocal behavior, as a function of wave number k. 
The k-dependent specific heat is the Fourier transform of the energy- 
density-energy-density correlation function, which has been calculated by 
Hecht. (4) The derivation presented here leads to the Fourier transform 
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directly. As will be seen, certain simple properties of this correlation 
function show up only in k space and are not evident in configuration 
space. 

The nonlocal specific heat has been measured in recent light-scattering 
experiments (5'6) for liquid 4He near its X point, where the divergence of the 
constant pressure specific heat is close to being logarithmic. (7'8) Unfortu- 
nately the three-dimensional theory, needed for comparison with the experi- 
mental results, cannot be worked out in closed form. It is therefore useful 
to calculate the specific heat scaling function in the neighboring limiting 
cases of two- and four-dimensional space. Bray (9) has done the four- 
dimensional calculation, while here we present the answer for two dimen- 
sions. We find the remarkable result that the two cases are described by 
one and the same scaling function. In a separate publication (1~ the error in 
applying the Bray function to three dimensions is estimated to amount to 
only a few percent. To this accuracy the Bray function is found to give a 
good account of the experimental datafl 

Our calculation makes use of analytic continuation (t2-~s) of the specific 
heat in the complex k 2 plane. (16) By means of unitarity we determine the 
specific heat in Section II in terms of a spectral function. This is defined 
along the cut which extends along the k 2 axis beginning at the two-particle 
threshold. In Section 3 we use Cauchy's theorem to find the scaling 
function in the physical domain (positive k 2 axis). Section 4 is a brief 
summary. 

2. SPECTRAL FUNCTION 

It has been shown (2) that the calculation of the critical temperature 
dependence of the equilibrium free energy of the two-dimensional Ising 
model is mathematically equivalent to finding the ground state energy of 
the one-dimensional Dirac field, described by the Hamiltonian density 

I - I (x)  = + (2.1) 

+(x) is a two-component second-quantized spinor operator, a and /3 are 
anticommuting Dirac matrices. Because the momentum operator p = 
- i O / O x  has only one component, a and fl are of rank two and can be 
chosen to be the Pauli spin matrices o~ and 0 3, respectively. ~ is a mass 
which is linearly proportional to the temperature and which vanishes at the 
critical temperature. Because of this linearity the entropy, obtained from 

2 See Ref. 11 ; the discrepancy reported in this paper disappears when different thermodynamic 
data, which we believe to be more correct are used. 
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the free energy by a temperature differentiation, is essentially 

S = ~/Og;dx g(x)= ;dx ~t(x)o3+(x ) (2.2) 

The correlation function corresponding to the specific heat is therefore 
expressed as the time-ordered Green's function 

G2( it ) oc ( TS( t)S(O)) (2.3) 

The equilibrium correlation as a function of space is found by analytically 
continuing Eq. (2.3) to negative imaginary values of t. 

The spectral function is obtained from Eq. (2.3) for real values of t by 
carrying out the Fourier transform and extracting its imaginary part. By 
unitarity this is equal to the rate of production of a pair of particles, as 
calculated from the "Golden Rule" of time-dependent perturbation theory. 
The required matrix element can be obtained either from a trace calcula- 
tion or from explicit expressions for the Dirac spinors. Taking the latter 
route, we find the positive and negative energy spinors from the single- 
particle Dirac equation 

(o,p + xo3)~+ = + e+z (2.4) 

where the energy eigenvalue has the relativistic form 

4E = (p2 "-I- K2) 1/2 (2.5) 

The solution of Eq. (2.4) is 

and orthogonality requires 

where 

and 

~+ = ( b )  (2.6a) 

~_ = ( _ h a )  (2.6b) 

1 (I + x /c )  1/2 (2.7a) 
d- 

-A-1 (1 - x /e )  1/2 (2.7b) b= 
reminiscent of the theory of superconductivity. We remark in passing that 
the spinor formalism employed here provides an efficient framework for the 
calculation, but it is by no means essential. A straightforward treatment of 
the pairing effects using a Bogoliubov-type transformation to quasiparticle 
operators leads to the same results. 3 

3For a more conventional approach to the properties of the Ising model see Ref. 16. 
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The pair-creation matrix element between the initial ground state (with 
all of the negative-energy single-particle levels filled) and the final particle- 
antiparticle pair state is 

Sfi  = t ~ ) + o 3 ~ _  = 2ab = p i e  = v (2.8) 

the velocity of the outgoing particles. Here we have substituted from Eqs. 
(2.6a, b) and (2.7a, b). The density of states per unit energy is given by 

Of co d p / &  = 1 / v  (2.9) 

The desired rate is therefore 

2rroflSf,] 2 o c  ( l / v ) v  2 = v (2.10) 

Identifying this rate with the spectral function we have 

F =  v (2.11) 

Bray's formula ~9) for the nonlocal specific heat can be derived as a 
production rate for a pair of bosons in (3 + l)-dimensional space. Com- 
pared to Eq. (2.8) the matrix element lacks the factor of p. But the phase 
space factor of p2 which has to be added to Eq. (2.9) for the two additional 
spatial dimensions compensates fully. The result is that Eq. (2.11) also 
describes the four-dimensional model. 

The monotonicity of F is evident from Eq. (2.11) as a function of 
UK 2--- - -k  2=  (2e) 2, the square of the pair energy. Rising from zero at 
threshold, where the outgoing particles are at rest, the velocity approaches 
asymptotically the limiting "velocity of light," normalized here to unity. 
From Eq. (2.5) we can eliminate the velocity in terms of u to obtain, for 
u > 4 ,  

F ( u )  = (1 - 4u)'/2 (2.12) 

[F(u) = 0 for u < 4]. 

3. SCALING FUNCTION 

The scaling function in its subtracted form is given by Cauchy's 
theorem as 

L ( x )  = - x 2 s  ~ du F ( u )  (3.1) 
u(u + x 2) 

Upon substitution of Eq. (2.12) the integration is facilitated by the variable 
change u = 4 cosh 2 qb, which yields Bray's formula 

L ( x ) = 2 - 2  1 + ~ -  ~ -+  1 + - ~ -  (3.2) 
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where the scaling variable is x = k /x .  Alternatively, we confirm by inspec- 
tion that Eq. (3.2) has a branch point at x 2 = - 4  and that the discontinuity 
across the cut extending from the branch point is 

A t - -  -2~ri 1 - ~ 1  = -2~riF(Ix2[) (3.3) 

Because of the uniqueness implied by Cauchy's theorem this identification 
is equivalent to carrying out the integration in Eq. (3. t). One can verify that 
Eq. (3.2) agrees with the Fourier transform of Hecht's ~4) expression for the 
energy-density-energy-density correlation function. 

The properties of Bray's formula are already familiar from his ~9) and 
other work. ~ll'IT'~s~ It suffices to note that L(x) is a monotonic negative 
definite function of x. It vanishes at x = 0 and for 0 < x << 1 varies as 
- x 2 / 6 .  For x >> 1, L ~ 2 -  21nx = -21n(k/ex), which defines an effective 
threshold factor I = e = 2.718 . . . .  The "rule of thumb" for convolution 
integrals ~19) suggests that I is roughly equal to 2, while the two-particle 
threshold requires l > 2. 

4. SUMMARY 

The nonlocal specific heat for the two-dimensional Ising model has 
been found to have a very simple spectral function. This is the velocity of 
the outgoing particles in the Minkowski metric version of the theory. We 
have noted that the very same spectral function applies to the theory in 
four dimensions, establishing the remarkable fact that the two- and four- 
dimensional models have identical nonlocal specific heat. For physical 
values of the wave number the latter is given by Bray's formula Eq. (3.2). 
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